Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

Identifieur interne : 002A48 ( Main/Exploration ); précédent : 002A47; suivant : 002A49

Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

Auteurs : Ani A. Elias [États-Unis] ; Victor B. Busov ; Kevin R. Kosola ; Cathleen Ma ; Elizabeth Etherington ; Olga Shevchenko ; Harish Gandhi ; David W. Pearce ; Stewart B. Rood ; Steven H. Strauss

Source :

RBID : pubmed:22904164

Descripteurs français

English descriptors

Abstract

Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.

DOI: 10.1104/pp.112.200741
PubMed: 22904164
PubMed Central: PMC3461535


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.</title>
<author>
<name sortKey="Elias, Ani A" sort="Elias, Ani A" uniqKey="Elias A" first="Ani A" last="Elias">Ani A. Elias</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331</wicri:regionArea>
<wicri:noRegion>Oregon 97331</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Busov, Victor B" sort="Busov, Victor B" uniqKey="Busov V" first="Victor B" last="Busov">Victor B. Busov</name>
</author>
<author>
<name sortKey="Kosola, Kevin R" sort="Kosola, Kevin R" uniqKey="Kosola K" first="Kevin R" last="Kosola">Kevin R. Kosola</name>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
</author>
<author>
<name sortKey="Etherington, Elizabeth" sort="Etherington, Elizabeth" uniqKey="Etherington E" first="Elizabeth" last="Etherington">Elizabeth Etherington</name>
</author>
<author>
<name sortKey="Shevchenko, Olga" sort="Shevchenko, Olga" uniqKey="Shevchenko O" first="Olga" last="Shevchenko">Olga Shevchenko</name>
</author>
<author>
<name sortKey="Gandhi, Harish" sort="Gandhi, Harish" uniqKey="Gandhi H" first="Harish" last="Gandhi">Harish Gandhi</name>
</author>
<author>
<name sortKey="Pearce, David W" sort="Pearce, David W" uniqKey="Pearce D" first="David W" last="Pearce">David W. Pearce</name>
</author>
<author>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22904164</idno>
<idno type="pmid">22904164</idno>
<idno type="doi">10.1104/pp.112.200741</idno>
<idno type="pmc">PMC3461535</idno>
<idno type="wicri:Area/Main/Corpus">002923</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002923</idno>
<idno type="wicri:Area/Main/Curation">002923</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002923</idno>
<idno type="wicri:Area/Main/Exploration">002923</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.</title>
<author>
<name sortKey="Elias, Ani A" sort="Elias, Ani A" uniqKey="Elias A" first="Ani A" last="Elias">Ani A. Elias</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331</wicri:regionArea>
<wicri:noRegion>Oregon 97331</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Busov, Victor B" sort="Busov, Victor B" uniqKey="Busov V" first="Victor B" last="Busov">Victor B. Busov</name>
</author>
<author>
<name sortKey="Kosola, Kevin R" sort="Kosola, Kevin R" uniqKey="Kosola K" first="Kevin R" last="Kosola">Kevin R. Kosola</name>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
</author>
<author>
<name sortKey="Etherington, Elizabeth" sort="Etherington, Elizabeth" uniqKey="Etherington E" first="Elizabeth" last="Etherington">Elizabeth Etherington</name>
</author>
<author>
<name sortKey="Shevchenko, Olga" sort="Shevchenko, Olga" uniqKey="Shevchenko O" first="Olga" last="Shevchenko">Olga Shevchenko</name>
</author>
<author>
<name sortKey="Gandhi, Harish" sort="Gandhi, Harish" uniqKey="Gandhi H" first="Harish" last="Gandhi">Harish Gandhi</name>
</author>
<author>
<name sortKey="Pearce, David W" sort="Pearce, David W" uniqKey="Pearce D" first="David W" last="Pearce">David W. Pearce</name>
</author>
<author>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium tumefaciens (genetics)</term>
<term>Agrobacterium tumefaciens (metabolism)</term>
<term>Carbon Isotopes (analysis)</term>
<term>Carbon Isotopes (metabolism)</term>
<term>Chimera (genetics)</term>
<term>Chimera (growth & development)</term>
<term>Chimera (metabolism)</term>
<term>Chlorophyll (genetics)</term>
<term>Chlorophyll (metabolism)</term>
<term>Conservation of Natural Resources (methods)</term>
<term>Forestry (methods)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Gibberellins (genetics)</term>
<term>Gibberellins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (genetics)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Shoots (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (growth & development)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Transgenes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium tumefaciens (génétique)</term>
<term>Agrobacterium tumefaciens (métabolisme)</term>
<term>Chimère (croissance et développement)</term>
<term>Chimère (génétique)</term>
<term>Chimère (métabolisme)</term>
<term>Chlorophylle (génétique)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Conservation des ressources naturelles (méthodes)</term>
<term>Gibbérellines (génétique)</term>
<term>Gibbérellines (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Isotopes du carbone (analyse)</term>
<term>Isotopes du carbone (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (génétique)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Science forêt (méthodes)</term>
<term>Transformation génétique (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (croissance et développement)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbon Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Isotopes du carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Chimère</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Chimera</term>
<term>Chlorophyll</term>
<term>Gibberellins</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Chimera</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Chimère</term>
<term>Chlorophylle</term>
<term>Gibbérellines</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Carbon Isotopes</term>
<term>Chimera</term>
<term>Chlorophyll</term>
<term>Gibberellins</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Conservation of Natural Resources</term>
<term>Forestry</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Chimère</term>
<term>Chlorophylle</term>
<term>Gibbérellines</term>
<term>Isotopes du carbone</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Conservation des ressources naturelles</term>
<term>Science forêt</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genotype</term>
<term>Transformation, Genetic</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Génotype</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transformation génétique</term>
<term>Transgènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22904164</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>160</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>1130-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.112.200741</ELocationID>
<Abstract>
<AbstractText>Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Elias</LastName>
<ForeName>Ani A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Busov</LastName>
<ForeName>Victor B</ForeName>
<Initials>VB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kosola</LastName>
<ForeName>Kevin R</ForeName>
<Initials>KR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Cathleen</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Etherington</LastName>
<ForeName>Elizabeth</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shevchenko</LastName>
<ForeName>Olga</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gandhi</LastName>
<ForeName>Harish</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pearce</LastName>
<ForeName>David W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rood</LastName>
<ForeName>Stewart B</ForeName>
<Initials>SB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005875">Gibberellins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003247" MajorTopicYN="N">Conservation of Natural Resources</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016468" MajorTopicYN="N">Forestry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005875" MajorTopicYN="N">Gibberellins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="Y">Transgenes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22904164</ArticleId>
<ArticleId IdType="pii">pp.112.200741</ArticleId>
<ArticleId IdType="doi">10.1104/pp.112.200741</ArticleId>
<ArticleId IdType="pmc">PMC3461535</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Biotechnol. 1999 Sep;17(9):361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10461182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Jul;18(7):784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Aug;13(8):1791-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11487693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Mar;59(6):679-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11867101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Jan;19(1):5-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12493241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Feb;24(2):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):2-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):254-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:197-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Feb;8(1):77-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Mar;10(3):123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Oct;222(2):372-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jul;224(2):288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Feb;77(2):483-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:93-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2006 Jan;4(1):23-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2007 Sep;5(5):615-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17825053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(12):3213-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):589-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):451-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19031047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jun;58(6):989-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2009 Jul;65(7):723-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19367567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):623-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Sep;67(5):805-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Dec;234(6):1285-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21792553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Nov;192(3):626-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21819406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1998 Feb;113(4):447-455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1989 Jan;78(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 1;11(23):3194-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9389651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Aug;117(4):1195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701576</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Busov, Victor B" sort="Busov, Victor B" uniqKey="Busov V" first="Victor B" last="Busov">Victor B. Busov</name>
<name sortKey="Etherington, Elizabeth" sort="Etherington, Elizabeth" uniqKey="Etherington E" first="Elizabeth" last="Etherington">Elizabeth Etherington</name>
<name sortKey="Gandhi, Harish" sort="Gandhi, Harish" uniqKey="Gandhi H" first="Harish" last="Gandhi">Harish Gandhi</name>
<name sortKey="Kosola, Kevin R" sort="Kosola, Kevin R" uniqKey="Kosola K" first="Kevin R" last="Kosola">Kevin R. Kosola</name>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
<name sortKey="Pearce, David W" sort="Pearce, David W" uniqKey="Pearce D" first="David W" last="Pearce">David W. Pearce</name>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
<name sortKey="Shevchenko, Olga" sort="Shevchenko, Olga" uniqKey="Shevchenko O" first="Olga" last="Shevchenko">Olga Shevchenko</name>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Elias, Ani A" sort="Elias, Ani A" uniqKey="Elias A" first="Ani A" last="Elias">Ani A. Elias</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22904164
   |texte=   Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22904164" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020